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Time-Domain Analysis of
Lumped-Distributed Networks

JAMES LAMAR ALLEN, FELLOW, IEEE

Abstract—A new method for time-domain analysis of networks contain-
ing transmission lines and lumped linear /nonlinear elements is presented.
A key feature of the method is a procedure for generating a system matrix
in a manner that invoives only sums of subnetwork (or element) terms (no
products or quotients). Numerical integration algorithms are used to
reduce the problem to a solution of snarse algebraic eanatione.

I. INTRODUCTION

IME-DOMAIN analysis of lumped-element networks

is well established. Powerful analytical and numerical
techniques are readily available, including the popular
state-space and Laplace transform methods. General pur-
pose computer programs such as SCEPTRE [1] and
SPICE [2] provide easy-to-implement time-domain solu-
tions for complex lumped systems even when nonlinear,
time-varying, and/or active elements are included.

The development of methods for transient analysis of
mixed lumped-distributed networks is of relatively recent
origin, and general techniques that permit, for example,
lossy transmission lines of arbitrary lengths and nonlinear
active lumped elements are not yet available. Yet, the
time-domain analysis of such networks is increasingly
important in design considerations of fast switching dig-
ital integrated circuits, broad-band radar and communica-
tion systems, time-domain reflectometry systems, and in
the study of lightning and EMP effects in systems contain-
ing transmission lines, to mention only a few applications.
The purpose of this paper is to present a technique suit-
able for the analysis of a very general class of lumped-dis-
tributed networks.

During the course of this study, a substantial literature
search was carried out. The most pertinent articles and
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books are listed for the reader’s convenience [3]-[17].
While the technique to be presented is significantly dif-
ferent from the methods found in the literature, the
present concept grew from a “wouldn’t it be nice if...”
thought session following a May 21, 1976, reading of
Silverberg’s [3] paper. Since that time, the new technique
has been successfully applied to a wide variety of prob-
lems. The impact of Silverberg’s work is gratefully ac-
knowledged.

II. SysTEM EQUATION FORMULATION: PART I

Consider systems which have network models consist-
ing of interconnections of linear distributed elements (e.g.,
TEM transmission lines, waveguides), lumped linear or
nonlinear elements, dependent sources, and independent
sources. Partition the network into two parts as shown in
Fig. 1. One part consists of linear (distributed and/or
lumped) elements. The other part contains any lumped
nonlinear or time-varying elements and independent
sources.

Silverberg’s [3] procedure is to solve for the terminal
behavior of the linear part of the network in the frequency
domain and then convert to a terminal time-domain de-
scription by numerical inverse-transform techniques. The
time-domain solution for the whole network is obtained
step-by-step in time at the interface of the two parts, by a
simultaneous solution of a convolution equation repre-
senting the linear part with a differential equation repre-
senting the nonlinear part. The simultaneous solution is
accomplished at each time increment by solving algebraic
equations obtained by application of the trapezoidal in-
tegration rule to the original equations.

For the moment let us focus our attention on the linear
part of the network. Wouldn’t it be nice if the frequency-

0018-9480/79 /1100-0890$00.75 ©1979 IEEE



ALLEN: TIME-DOMAIN ANALYSIS OF LUMPED-DISTRIBUTED NETWORKS

Linear, 01 VNonlinear,
Distributed and U S—— time~varying
Lum>ed Elements iy lumped elements

» plus sources

.

®

By

Fig. 1. Partitioned network.

domain calculations and the inverse-transform calcula-
tions could be eliminated and all calculations be per-
formed directly in the time domain? Computer program
complexity, memory requirements, and computational
time could all be significantly reduced. The catch is that
we would need a way of combining element descriptions
to form network descriptions such that the resulting
network matrix is directly compatible with convolution
solutions. Basically this implies that the overall system
matrix should contain only sums or differences of individ-
nal element responses (no products or quotients allowed).
The indefinite admittance matrix [18] appeared a good
possibility, but because of the type of systems to be
considered, a port-description method rather than a termi-
nal-description method was desired. Kron’s transforma-
tion methods [19] provided the inspiration for the tech-
nique to be described. However, formal transformation
techniques turn out to be unnecessary, a very simple
algorithm sufficing. At this point, the problem statement
for the linear part of the network is the following. De-
termine a scheme for representing networks, such that
given the terminal step response of the subnetworks (or
elements) in the time domain, the time-domain terminal
step response for the connected overall network can be
determined as sums and differences of the individual
subnetwork responses. Then, by convolution the time-
domain terminal response of the overall network can be
determined for any specified set of inputs.

A. Combining Subnetworks

Short-circuit admittance parameters will be used (a
dual-impedance representation has also been wused
successfully). The underlying feature of the method is to
treat every kind of connection as though it is a parallel
connection. This approach requires the addition of open-
circuited ports in certain situations. Such additional ports
are like ideal voltmeter connections enabling determina-
tion of voltage at that point in the network without
disturbing the system. The added open-circuited ports
increase the size of the system matrix but the associated
current 1s zero and the overall system matrix is sparse.
The net effect has thus far appeared to be an increase in
computational efficiency.

As a first example consider the cascade connection of
the two 2-ports as shown in Fig. 2(a). Common practice
would have us multiply the individual ABCD parameters
to obtain the new ABCD parameters for the cascade
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Fig. 2. (a) Cascade connection of two 2-ports. (b) Cascade connection
treated as a parallel connection with added open-circuit port.

connection. However, we are now constrained to use ¥
parameters and to avoid products and quotients of indi-
vidual terms in our overall description. This can be ac-
complished as follows. Notice that the cascade connection
of Fig, 2(a) to form a new 2-port can be treated as a
parallel combination of ports 2 and 3 to form a new
3-port as shown in Fig. 2(b). If port 3’ is open-circuited,
then physically the networks of Fig. 2(a) and 2(b) are
identical. However, the mathematical descriptions are dif-
ferent. In the first case the resulting network is treated as
a 2-port, while in the second case it is treated as a 3-port
with I{=0. The resulting y matrix for the cascade connec-
tion treated as a constrained 3-port is determined as
follows. First form the Y matrix for the unconnected
subnetworks.

1 2 3 4
1 Y Y 0 0

Yep=2 | Y& | Y5 0 0 .M
3 0 0 Y2 | YB
4 0 0 Y2 | Y2

The rows and columns of ?SUB corresponding to ports to
be connected in parallel are now added. Ports 2 and 3
combine to form port 3, while ports 1 and 4 become !’
and 4, respectively. The result is the desired ¥ matrix for
the cascade combination treated as a constrained 3-port.

1/ 3/ 4/
1’ Y{‘l Y{‘z 0
Ycascape=3 Yi‘i Yfé + Ylg Yle . @
=0 410 Y3 YS

This representation of a cascade connection involves only
sums of the subnetwork element admittances. The more
conventional 2-by-2 matrix representation for the cascade
connection can be obtained by eliminating V; from the
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parallel yielding a new 4-port network. Rows and columns 1, 4, of
Ygus are added to obtain Y.

system equations (since I;=0). The resulting Y matrix is

1/ 4/
a ya ByvA
% A _ Y21 2 B Y12Y12
1 A B B
Ya+ Y YH+Yi
A~B B vA
v =4 —Y51Y3, 4 _ Y21 Y1
- a B 22 a B
STATOARD ntYn 2tYy

€)

which obviously includes products and quotients of indi-
vidual 2-port terms, thereby complicating a solution by
convolution.

True parallel connections are simple and require no
added open-circuited ports. A parallel connection of one
port of a 3-port network with one port of a 2-port network
to form a new 4-port network is illustrated in Fig. 3.

A series interconnection of ports in terms of admittance
parameters under the constraint that only sums of individ-
val subnetwork admittance parameters appear in the re-
sult requires a little more ingenuity. An auxiliary connect-
ing network is introduced. The series connection of a pair
of ports is illustrated in Fig. 4 using the networks of Fig.
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Fig. 4. (a) Unconnected subnetworks with “A4” modified for series
connection of port 1. (b) Series interconnection of port 1 of “4” with
port 4 of “B”.

3(a). Port 1 of network A is to be series connected to port
4 of network B. Series T is connected to port 1 and the Y
matrix modified as shown. This operation is easily done
automatically by a computer upon receiving the command
for a series connection.

The series, parallel, and cascade connections of pairs of
ports, permit very general networks to be configured from
subnetworks (or elements). The method presented above
permits system equations to be formulated involving only
sums of subnetwork admittance terms as desired.

IIL.

Return now to the total network consisting of linear
distributed and lumped elements plus nonlinear and
time-varying lumped elements. The network is partitioned
as shown in Fig. 1. The solution procedure is as follows.
First, the short-circuit step-response matrix for the linear
part of the system is established as sums of the individual
subnetwork terms as described in the preceding section,
then a matrix convolution equation is formed relating port
voltages and currents at the interface between the linear

SYSTEM EQUATION FORMULATION: PART 11
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and nonlinear network parts. The interface port voltages
and currents are simultaneously constrained by the equa-
tions for the nonlinear part of the network. Both convolu-
tion and nonlinear equations are represented numerically
by using trapezoidal (or another appropriate technique)
integration leading to a set of simultaneous algebraic
equations relating port voltages and currents at each time
increment. Solution of these equations yields desired volt-
ages and currents at each time increment.

The step-response matrix for each linear network may
be determined by measurement or calculation. Let A(s) be
the step-response matrix in the Laplace transform domain
and ?(s) be the short-circuit admittance matrix. Then,

A(s)=(1/9)Y(s) @

Q=L A} =" {1/)T () )

where a(¢) is the step-response matrix in the time domain.
Interface port currents and voltages are constrained by
the linear part of the network as follows, where I(s) and

17(s) are vectors of port currents and voltages, respec-
tively:

I(s5)=Y(s)¥(s)
=[% ?(s)][sﬁ(s)] (6)
i ()=L"YI(s)}

or

F()=d(O+s(U_ () +E()T(0%) (7
where g(t) is the time derivative of the port voltage vector,
B(0%) is the initial value of the port voltage vector, U_,(#)
is a unit step, and * implies convolution. The nature of the

nonlinear elements is assumed to be such that a descrip-
tion of the form

o()=f (8(),i (1),1) (8)

is possible, where f(é’(t),i_(t), ?) is a matrix whose elements
are explicit functions of (), i(¢), and ¢. Equations (7) and
(8) describe the network completely. Given the initial
conditions on ¢(¢), we can in principle solve for ©(r) and
i(¢) from (7) and (8). Unless the matrix of functions is
extremely simple, the solution must be obtained numeri-
cally. Any implicit integration technique may be used.
Trapezoidal (fixed or variable interval) and Gear-type
algorithms [20] have proven very satisfactory. For ease of
presentation the fixed interval trapezoidal method will be
presented.

Let A be the interval between time points. Then, (7) can
be written as
k
S [a([k+1-718)+@([k-118)]

P

;’(Aklk) = E%

~

[BGA) = ([~ 1]8) ]+ (kB)T(©0F),
k=12---. (9)

In each increment, the step response is approximated by
the average of its two end-point values and the derivative

INPUT NETWORK TOPOLOGY

v

PARTITION NETWORK INTO
LINEAR AND NONLINEAR PARTS

LINEAR NONLINEAF

\

g ——

INPUT £(v, 1, ©)
v(ot), 1i(oh)

CONSTRUCT STEP
-~
RESPONSE MATRIX ait)

>
CALCULATE g

k=k + 1

YES

k=Max STOP

NO

CALCULATE Io(kz\) s
FE(k-118),7([k=118), -1A)

L

SOLVE EQUATIONS 10 and 14
STMULTANEOUSLY FOR 1(A) and v(kA)

STORE AND WRITE 1(kA) and v(kA)

Fig. 5. Simplified flow chart for solution procedure.

of the voltage is approximated by the divided difference
of its end-point values. Notice that i(kA) in (9) can be
separated into two parts, one depending on the past
history and the other on the current value of ©(k4), as
follows:

i (kD)= ig(kA)+ E,0(kD),  k=1,2,---  (10)
where
go=1/2[d(8)+d(0")] (n
. k-1
k)= 3 [a([k+1-/18)+a([k=7]4)]
(3G —o([/-1]8)]
— £,8([k—1]4) + @ (kB)5(0*). (12)

Thus g, is a constant matrix equal to the average step
response during the first time interval. The vector iy(kA)
can be treated as a set of current sources whose values are
determined by the past history of o(kA). For a given value
of k, io(kA) is known. In effect, a lumped time-varying
terminal equivalent circuit has been obtained for the
linear (lumped-distributed) part of the overall network.
For the nonlinear part, from (8) we have

3(f)= f, ’_Af (B(r),7 (1), r)dr +B(t—A).  (13)



894

+
Vg(t)

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-27, NO. 11, NOVEMBER 1979

Fig. 6. Circuit for Example 1. Ry=50 @, 7,=7,=13=10 ps, ()=
_i(HV.

By the trapezoidal integration rule we have

B(kA)= A f (B(kA),i (kA),kA)

+ A7 k=118 ([6-118), (k-1))
+8([k—1]4), fork=1,2,--- (14)

where (kA) is separated into two parts, one depending on
the current value and the other on the past history of ¢
and i.

The solution for the overall network is obtained by
solving for ©(kA) and z(kA) 81multaneously from (10) and
(14) at each time increment k=1,2,---. Note that the
system of equations is algebraic even when the network
contains distributed elements. The simplified flow chart of
Fig. 5 summarizes the solution procedure.

1V. EXAMPLES

The following examples were chosen such that they
could be verified by hand calculations, and to clearly
detail the solution procedure.

Example 1: Three lossless transmission lines are inter-
connected as shown in Fig. 6(a). Determine the currents
i), Iy, and iy, given that 0 ()= U_(H) V.

The network is first redrawn, breaking the circuit into
subnetworks whose step responses are known, and adding
open-circuited ports at any required points as shown in
Fig. 6(b). Let A=1 ys. This information is supplied to the
computer causing the unconnected subnetwork matrix to
be established as given in (15) (zeros are not stored).

1 4 5 2 6 3
1{atlatl 00|00
4/af a0 0] 0] 0O
dsus(D=5[0 ] 0 [aZ a2 0 | O
2{ 0[]0 |aZ|aZ] 0] 0 (15)
60000 [af]|aS
3fololo]|o[aS]ag

The a;’s for these subnetworks are given in Fig. 7. A

Ry k_T =T'—>|
—0 o~V 0 o
1 A B => 1 z =R 4
o o o o
|.<_T:=T——>| Ry
o - o
Z =R 2
o I A e
b 13 = T
o o
@)
A _ B 1
117 %22 T 7k Ej—l<t) Ul ZT)]
A A B Bo_ 1
F12 T %1 T AT 8 T R Uy e -0
A B 1
2 T2 TR U
- a
c _.¢c _1 Rl
allgaZZ_RO EJ__I(D +2U_l(t—2T) +2U_l(t—4‘f) + “j
¢ _ _C _=4]
alZ =ay = Rof‘l(t - T) + U_l(t - 31) + ..J

®)

Fig. 7. (a) Subnetwork designations. (b) Step-response elements for the
subnetworks of (a) with 7, =71, =7,=17.

variety of subnetwork terms frequently needed are stored
and available in the program. New a;’s may be input as
equations, tables, or measured data.

Next the interconnection information is input which, in
this case, causes rows and columns 4, 5, and 6 to be added
yielding the connected network matrix given in (16). The
individual @;’s are given in Fig. 7(b).

1 2 3 4
1|a ol o0 al
- o = (16)
a®=2| 0 |ap| O a;
310 as, asg
4| az | apy | ad | ahtal
+ alc1

Notice that the primes have been dropped from the port
designations to simplify writing the equations. Interface
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Fig. 8. Solution for Example 1, volts and amperes.

constraints are now imposed. In general this would in-
volve a set of equations representing the nonlinear and
source part of the system. In this example, the constraints
are simply v,=U_(¥), v,=0, v;=0, and i;=0. Initial
conditions are v;(07)=1, 0,(07)=0;(0")=0,(0%)=0.
Equation (10) can now be written for this example as
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Fig. 9. Circuit for Example 2. Rg=50 Q, 7j=7,=73=10 ps, v, ()=
tU_(9), for t <2 ps, =0, for t>2 ps.
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Fig. 10. Solution for Example 2, volts.

1
i\ (kA o (KA — | o |0 o 1
(k) | ik || 5
(kA | = [ igy(kA) | + | 0 5;—{- 0|0 0 (17
0
. ) 2
i(kA) ios(k) 0| 0 |0 0
0
. 4
0 igu (kD) 0| o |0 |— 0, (kbY)
R,

where iy, igy, ig3, and iy, must be calculated at each time
increment using (12).
For k=1, iy,(A) = ig(A) = ig3(A) = ipy(A) =0, so that from
(17) we obtain
i(A)=1/2R,
i(4)=0
i,(A)=0
0,(8) =0. (18)
No change occurs in any variable until kA= r. For k=10,
i.e., kA =1, ig;(10A) = i3,(104) = i;(10A) =0, and iy,(10A) =
—1/R,, so that (17) now yields
i,(10A)=1/2R,
i,(104)=0
i;(10A)=0

0,(10A)=1/4. (19)

No further change occurs until kA=2r, at which time i,
i, and iy all change. The solution proceeds as indicated
with the final results shown in Fig. 8.

Example 2: Let the network of Example 1 be modified
to include a nonlinear element as shown in Fig. 9. The
input voltage is now o ()=tU_,(?), for t<2 ps, and
0,(1)=0, for £>2 ps. All other parameters for Example 1
remain unchanged. Determine v,(f) and v,(¢).

The setup for Example 1 remains unchanged except for
the new input voltage and the constraint imposed on the
output port of block “C” by the nonlinear device. With
A=0.5 ps and the proper nonlinear constraint imposed,
the program yields the results of Fig. 10, which can be
easily verified by hand calculations.

Example 3: A network consisting of three sections of
lossy but distortionless transmission lines with RC loads,
as shown in Fig. 11, is driven by a step current generator.
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Fig. 11. Circuit for Example 3. iy()=2U_,(t) A, 7=0.5 s, y,=7,=
ys+ 1, ZO] =1 9, ZO2= Zo3=2 Q.
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Fig. 12. Solution for Example 3, volts.

Determine v,(¢) and vy(¢). This example is one used by
Silverberg [3]. The exact solutions for this problem are

v()=(1-e")V
vy(t)=(e ¥ —e HU_,(t-05) V. (20)

Results computed by the computer program are shown in
Fig. 12 and agree with the exact results to six decimal
places.

V. CONCLUSION

A new method for time-domain analysis of lumped-dis-
tributed networks has been presented. The method is easy
to implement and has been successfully applied to a
number of networks involving transmission lines and
lumped linear and nonlinear elements. Tutorial examples
are provided to illustrate the working details of the
method.
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