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Time-Domain Analysis of
Lumped-Distributed Networks

JAMES LAMAR ALLEN, FELLOW, IEEE

Abwuct-A new method for time-domain mrafysis of networks contain-

ing transmission fries and hoped finear/nonfinear elements is presented.

A key feature of the method is a procedure for generating a system matrix

in a manner that involves only sums of subnetwork (or element) terms (no

products or quotients). Numericaf integration algorithms are used to

reduce the rwoblem to a solution of maw akehraic eouatime.

I. INTRODUCTION

T IME-DOMAIN analysis of lumped-element networks

is well established. Powerful analytical and numerical

techniques are readily available, including the popular

state-space and Laplace transform methods. General pur-

pose computer programs such as SCEPTRE [1] and

SPICE [2] provide easy-to-implement time-domain solu-

tions for complex lumped systems even when nonlinear,

time-varying, and/or active elements are included.

The development of methods for transient analysis of

mixed lumped-distributed networks is of relatively recent

origin, and general techniques that permit, for example,

lossy transmission lines of arbitrary lengths and nonlinear

active lumped elements are not yet available. Yet, the

time-domain analysis of such networks is increasingly

important in design considerations of fast switching dig-

ital integrated circuits, broad-band radar and communica-

tion systems, time-domain reflectometry systems, and in

the study of lightning and EMP effects in systems contain-
ing transmission lines, to mention only a few applications.

The purpose of this paper is to present a technique suit-

able for the analysis of a very general class of lumped-dis-

tributed networks.

During the course of this study, a substantial literature

search was carried out. The most pertinent articles and
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books are listed for the reader’s convenience [3]-[17].

While the technique to be presented is significantly dif-

ferent from the methods found in the literature, the

present concept grew from a “wouldn’t it be nice if... ”

thought session following a May 21, 1976, reading of

Silverberg’s [3] paper. Since that time, the new technique

has been successfully applied to a wide variety of prob-

lems. The impact of Silverberg’s work is gratefully ac-

knowledged.

11. SYSTEM EQUATION FORMULATION: PART I

Consider systems which have network models consist-

ing of interconnections of linear distributed elements (e.g.,

TEM transmission lines, waveguides), lumped linear or

nonlinear elements, dependent sources, and independent

sources. Partition the network into two parts as shown in

Fig. 1. One part consists of linear (distributed and/or

lumped) elements. The other part contains any lumped

nonlinear or time-varying elements and independent

sources.

Silverberg’s [3] procedure is to solve for the terminal

behavior of the linear part of the network in the frequency

domain and then convert to a terminal time-domain de-

scription by numerical inverse-transform techniques. The

time-domain solution for the whole network is obtained
step-by-step in time at the interface of the two parts, by a

simultaneous solution of a convolution equation repre-

senting the linear part with a differential equation repre-

senting the nonlinear part. The simultaneous solution is

accomplished at each time increment by solving algebraic

equations obtained by application of the trapezoidal in-

tegration rule to the original equations.

For the moment let us focus our attention on the linear

part of the network. Wouldn’t it be nice if the frequency-
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Fig. 1. Partitioned network.

domain calculations and the inverse-transform calcula-

tions could be eliminated and all calculations be per-

formed directly in the time domain? Computer program

complexity, memory requirements, and computational

time could all be significantly reduced. The catch is that

we would need a way of combining element descriptions

to form network descriptions such that the resulting

network matrix is directly compatible with convolution

solutions. Basically this implies that the overall system

matrix should contain only sums or differences of individ-

ual element responses (no products or quotients allowed).

The indefinite admittance matrix [18] appeared a good

possibility, but because of the type of systems to be

considered, a port-description method rather than a termi-

nal-description method was desired. Kron’s transforma-

tion methods [19] provided the inspiration for the tech-

nique to be described. However, formal transformation

techniques turn out to be unnecessary, a very simple

algorithm sufficing. At this point, the problem statement

for the linear part of the network is the following. De-

termine a scheme for representing networks, such that

given th: terminal step response of the subnetworks (or

elements) in the time domain, the time-domain terminal

step response for the connected overall network can be

determined as sums and differences of the individual

subnetwm-k responses. Then, by convolution the time-

domain terminal response of the overall network can be

determined for any specified set of inputs.

A. Combining Subnetworks

Short-circuit admittance parameters will be used (a

dual-impedance representation has also been used

successfully). The underlying feature of the method is to

treat every kind of connection as though it is a parallel

connecticm. This approach requires the addition of open-

circuited ports in certain situations. Such additional ports

are like ideal voltmeter connections enabling determina-

tion of voltage at that point in the network without

disturbing the system. The added open-circuited ports

increase the size of the system matrix but the associated

current IN zero and the overall system matrix is sparse.

The net effect has thus far appeared to be an increase in

computational efficiency.

As a first example consider the cascade connection of

the two 2-ports as shown in Fig, 2(a). Common practice

would have us multiply the individual ABCD parameters

to obtain the new ABCD parameters for the cascade

~, d~
Port 3‘ Open-circuited

(b)

Fig. 2. (a) Cascade connection of two 2-ports. (b) Cascade connection
treated as a parallel connection with added open-circuit port.

connection. However, we are now constraineal to use Y

parameters ami to avoid products and quotients of indk

vidual terms in our overall description. This can be ac-

complished as follows, Notice that the cascade connection

of Fig. 2(a) to form a new 2-port can be treated as a,

parallel combination of ports 2 and 3 to form a new

3-port as shown in Fig. 2(b). If port 3’ is open-circuited,,

then physically the networks of Fig. 2(a) and 2(b) are

identical. However, the mathematical descripticms are dif-

ferent. In the first case the resulting network is treated a~s

a 2-port, while in the second case it is treated as a 3-pol:t

with 1:= 0. Thle resulting y matrix for the cascade connec-

tion treated a.s a constrained 3-port is determined a$

follows. First form the Y matrix for the unconnected

subnetworks.

1

:SUB = 2

3

4

(1)

The rows and columns of ~su~ corresponding to ports to

be connected in parallel are now added. Porits 2 and 3

combine to form port 3’, while ports 1 and 4 become l“

and 4’, respectively. The result is the desired Y matrix fc~r

the cascade combination treated as a constrained 3-port.

~, 3’ 4’

I , I

‘Y~=2-+%?-H“ ‘2)
L

This representation of a cascade connection involves only

sums of the subnetwork element admittances. The more

conventional 2-by-2 matrix representation for the cascadl e

connection can be obtained by eliminating V; from the
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Fig. 3, (a) Uncomected subnetworks. (b) Ports 1 and 4 connected in
pprallel yielding a new 4-~ort network. Rows and columns 1, 4, of
YsuB are added to obtain Y.
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Fig. 4. (a) Unconnected subnetworks with “A” modified for series

comeetion of port 1. (b) Series interconnection of port 1 of “A” with
port 4 of “B”.

(3)

which obviously includes products and quotients of indi-

vidual 2-port terms, thereby complicating a solution by
convolution.

True parallel connections are simple and require no

added open-circuited ports. A parallel connection of one

port of a 3-port network with one port of a 2-port network

to form a new 4-port network is illustrated in Fig. 3.
A series interconnection of ports in terms of admittance

parameters under the constraint that only sums of individ-

ual subrietwork admittance parameters appear in the re-

sult requires a little more ingenuity. An auxiliary connect-

ing network is introduced, The series connection of a pair

of ports is illustrated in Fig. 4 using the networks of Fig.

3(a), Port 1 of network A is to be series connected to port

4 of network B. Series T is connected to port 1 and the Y

matrix modified as shown. This operation is easily done

automatically by a computer upon receiving the command

for a series connection.

The series, parallel, and cascade connections of pairs of

ports, permit very general networks to be configured from

subnetworks (or elements). The method presented above

permits system equations to be formulated involving only

sums of subnetwork admittance terms as desired.

III. SYSTEM EQUATION FORMULATION: PART II

Return now to the total network consisting of linear

distributed and lumped elements plus nonlinear and

time-varying lumped elements. The network is partitioned

as shown in Fig. 1. The solution procedure is as follows.

First, the short-circuit step-response matrix for the linear

part of the system is established as sums of the individual

subnetwork terms as described in the preceding section,

then a matrix convolution equation is formed relating port

voltages and currents at the interface between the linear
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and nonlinear network parts. The interface port voltages

and currents are simultaneously constrained by the equa-

tions for the nonlinear part of the network. Both convolu-

tion and nonlinear equations are represented numerically

by using trapezoidal (or another appropriate technique)

integratim leading to a set of simultaneous algebraic

equations relating port voltages and currents at each time

increment. Solution of these equations yields desired volt-

ages and. currents at each time increment.

The sl,ep-response matrix for each linear network may

be determined by measurement or calculation. Let A(s) be

the st~p-response matrix in the Laplace transform domain

and Y(.Y) be the short-circuit admittance matrix. Then,

2(s) =(l/s) f(s) (4)

;(t) =V{z(s)}=f 3-’{(l/s)F( s)} (5)

where ;(t) is the step-response matrix in the time domain.

Interfi~ce port currents and voltages are constrained by

t~e linear part of the network as follows, where 1(s) and

V(s) are vectors of port currents and voltages, respec-

tively:

l(s) = f(s) ?(s)

.
[ ][+ F(s) Si(s) :

:(t)=r~{;(s)}

or

(6)

:(t) =qt)*;(t) u_,(t) +z(t)6(o+) (7)

where ;(t) is the time derivative of the port voltage vector,

;(O+) is the initial value of the port voltage vector, U_ l(t)

is a unit step, and * implies convolution. The nature of the

nonlinear elements is assumed to be such that a descrip-

tion of the form

;(t) =;(z(t),:(t), t) (8)

is possible, where ~(;(t), it), r) is a matrix whose elements

are explicit functions of ;(i), <t), and t.Equations (7) and

(8) describe the network completely. Given the initial

conditions on ;(t), we can in principle solve for ;(t)and

it) from (7) and (8). Unless the matrix of functions is

extremely simple, the solution must be obtained numeri-

cally. Any implicit integration technique may be used.

Trapezoidal (fixed or variable interval) and Gear-type

algorithms [20] have proven very satisfactory. For ease of

presentation the fixed interval trapezoidal method will be

presented.

Let Abe the interval between time points. Then, (7) can

be written as

:(lkA)=+J~,[E([k+l–~lA)+d([k–~lA)l

o[i5(jA)-i$[[j- l] A)] +d(kA)Z(O+),

k=l,2,.. . . (9)

In each increment, the step response is approximated by

the average of its two end-point values and the derivative

I INPUT NETWORK TOPOLCGY
I

+

[,
PARTITION NETWORK INTO

LINEAR AND NONLINEAR PARTS

I

I LINEAR JNONLINEAE

7

—

INPUT ;(;4 :, t)

;(O+) , i(o+)

— 3

–=

~-

YES

k =1.kz
STOP 1

NO

—

CALCULATE lo @A),

;(:([k-ll A),:([k-ll A), (k-l)A)
1

I

[

~.
SOLVE EQUATIONS 10 and 14

SINOLTANEOUSLY FOR ~(kA) and ;(kA)

I
1

893

k ~.
STORE AND WRITE ;(kA) and ;(kA)

— 1
Fig. 5. Simplified flow chart for solution procedure.

of the voltage is approximated by the divided difference

of its end-point values. Notice that i(kA) in (9) can lx

separated intc~ two parts, one depending on the past

history and the other on the current value of G(kA), m

follows:

;(kA) = ;(kA) + &@(kA), k= 1,2,... (10)

where

&=l/2[~(A)+ti(O+)] (111)

~(kA)=~ “~1 [@([k +l–j]A)+Z([k–.) ]A)]
j=l

.[Z(jA)-t([j-l]A)]
–&7( [k- 1]A)+fi(kA)Z(O+). (1:!)

Thus & is a constant matrix equal to the averagq step

response during the first time interval. The vector io(kA)

can be treated as a set of current sources whose values am

determ@ed by the past history of ti(kA). For a ,given value

of k, iO(kA) is known. In effect, a lumped time-varyirg

terminal equivalent circuit has been obtained for the

linear (lumpedI-distributed) part of the overall network.

For the nonlinear part, from (8) we have

z(t)==J1 “7(ti(7-),:(’r),T)dT+3(t--AL). (1:1)
t–A
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.9 A A

(a)

Fig. 6. Circuit for Example 1. RO=50 0, r1=r2=r3= 10
u_,(t) v.

By the trapezoidal integration rule we have

+ $~(i?([k– l] A), j([k–l]A), (k–l)A)

+J([k–l]A), fork= I,2,. . . (14)

where i7(kA) is separated into two parts, one depending on

the current value and the other on the past history of d

and ;

The solution for thg overall network is obtained by

solving for Z(kA) and i(kA) simultaneously from (10) and

(14) at each time increment k= 1,2, . . . . Note that the

system of equations is algebraic even when the network

contains distributed elements. The simplified flow chart of

Fig. 5 summarizes the solution procedure.

The

Vg(t)

IV. EXAMPLES

The following examples were chosen such that they

could be verified by hand calculations, and to clearly

detail the solution procedure.

Example 1: Three lossless transmission lines are inter-

connected as shown in Fig. 6(a). Determine the currents

il, iz, and is, given that oJt) = U_ ~(t) V.
The network is first redrawn, breaking the circuit into

subnetworks whose step responses are known, and adding
open-circuited ports at any required points as shown in

Fig. 6(b). Let A= 1 ps. This information is supplied to the

computer causing the unconnected subnetwork matrix to

be established as given in (15) (zeros are not stored).

145263

1 afi a: o 0 0 0

4 a; a& o 0 0 0

Z&(t) = 5 0 0 afi a; o 0

2 0 0 a: a~ o 0

6 0 0 0 0 ah a~

3 0 0 0 0 a; a.$

au’s for these subnetworks are given in Fig.

(15)

7. A

/M., ug(t) =

+’ ZO=R4
-

0
0

(a)

A B 1

all = a22 = 2R-1 1
u_l(t) + U_l(t - 2T)

o

A A B B

a12 = a21 = a12
~ U_l(t - T)

‘a21=-R0

A B

a22
~ U_I(t)

‘all=R
0

c c
all = a22 = [

# U_I(t) + 2U_1(t - 2?) + 2U_1(t - 4T) + . . .

0 1

c c 1‘JU (t-T) +U_l(t -.3T) + . . .
al~ = a21 ‘ RO~-l

(b)

Fig. 7. (a) Subnetwork designations. (b) Step-response elements for the

subnetworks of (a) with TI = Tz = T3= T.

variety of subnetwork terms frequently needed are stored

and available in the program. New ati’s may be input as

equations, tables, or measured data.

Next the interconnection information is input which, in

this case, causes rows and columns 4, 5, and 6 to be added

yielding the connected network matrix given in (16). The

individual au’s are given in Fig. 7(b).

1

qt)=2

3

4

123 4

(16)

Notice that the primes have been dropped from the port

designations to simplify writing the equations. Interface
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Fig. 8. Solution for Example 1, volts and amperes.

constraints are now imposed. In general this would in-

volve a set of equations representing the nonlinear and

source part of the system. In this example, the constraints

are simply ~, = U_,(t), v?= O, V3= O, and i4 = O. Initial

conditions are V1(O+) = 1,

Equation (10) can now

where i{,,, i02, io3, and iw

increment using (12).

u2(o+)=-t+(o+) =qJo+)=o.

be written for this example as

il(kA)

i2(kA)

iJkA)

o

.

iO1(kA)

ioJkA)

io~(kA)

iM(kA)

+

Fig. 9. Circuit for Example 2. RO= 50 Q, r,= T2= T3= 110W, Og(t)=
tfl_l(r), for t <2 ps, =0, for t>2 ps.

must be calculated at each time

For k= 1, io,(A) = io2(A) = iO~(A) = iw(A) = O, so that from

(17) we obtain

No change occurs

i.e., kA ❑=T, iO1(loA

– I/R. so that (1’

ii(A) = l/2R0

iz(A) = O

i3(A) = O

oq(A) = O. (18)

n any variable until kA = ~. For k = 10,

= iOJIOA) = i03(10A) = O, and iw(lOA) =

) now yields

il(lOA) = l/2R0

iz(lOA) = O

i3(10A) = O

DA(10A)= 1/4. (19)

1
I

Fig. 10. Solution for Example 2, volts.

1

2R0 0

0 -J-
2R0

0 0

0 0

- :

0 0

0 0

2 0

RO

0
4-—

.Ro

1

0

0

v4(kA)

(17)1

No further change occurs until kA = 2~, at which time i,,

iz, and is all change. The solution proceeds as indicate;i

with the final results shown in Fig. 8.

Example 2: Let the network of Example 1 be modifiecl

to include a nonlinear element as shown in Fig. 9. l%e

input voltage is now vJt) = t U_ ~(f), for t<2 ps, ancl

o~(t) = O, for t >2 ps. All other parameters for Example 1[

remain unchanged. Determine Oz(t) and oJt).

The setup fc)r Example 1 remains unchanged except for

the new input voltage and the constraint imposed on the

output port of block “C” by the nonlinear device. With

A= 0.5 ps and. the proper nonlinear constraint imposed,

the program yields the results of Fig. 10, which can be

easily verified by hand calculations.

Example 3: A network consisting of three sections of

lossy but distortionless transmission lines with RC loads,

as shown in Fig. 11, is driven by a step current generator.



896 IEEE TRANSACTIONS ON hilCROWAW3 THEORY AND TECHNIQUES, VOL. MTT-27, NO. 11, NOVEMtSER 1979

Fig. 11. Circuit for Example 3. ig(t) =2 U_ l(t) A, 7=0.5 s, -yI= Yz=
ys+l, zol=l Q,zo2=zo3=2Q.

“’L’iii____
n 10 2,0 30 40 50

#
5.

10 -

0s -

.2ft) 0,6 - x .x .x

x
0,. -

0.2 - .x

I , 1 1
0 1., ) ?0 3’0 Jo 50

%!,

Fig. 12, Solution for Exar@e 3, volts.

Determine Ul(t) and 02(t). This example is one used by

Silverberg [3]. The exact solutions for this problem are

vl(t)=(l–e-Z)V

02(t)=(e-0”5–e -’)u_,(t-o.5)v. (20)

Results computed by the computer program are shown in

Fig. 12 and agree with the exact results to six decimal

places.

V. CONCLUSION

A new method for time-domain analysis of lumped-dis-

tributed networks has been presented. The method is easy

to implement and has been successfully applied to a

number of networks involving transmission lines and

lumped linear and nonlinear elements. Tutorial examples

are provided to illustrate the working details of the

method.
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